
Pythia: A Parallel Compiler for Delirium+

Oliver Sharpt

~ay 22, 1990

Abstract

Pythia is an optimizing compiler for the coordination language Delirium, written in

Delirium. It is part of the Madness project, which investigates both an alternative to the

traditional dataflow model and an alternative to the traditional dataflow implementation

strategy. Delirium embeds imperatively defined operators within a functional context,

giving the programmer control over the granularity of a computation. The application's

control structure is expressed using powerful functional-language constructs like closures

and function valued parameters. The bulk of actual computation, however, is expressed

in a convenient imperative language. Pythia performs traditional optimization strategies

like macro-expansion, common-subexpression elimination, and constant propagation.

t Supported by Hertz Fellowship and Lawrence Livermore)rational Laboratory

t Preparation of this paper was supported in part by the Defense Advanced Research

Project Agency (DoD), monitored by Space and Naval Warfare Systems Command under

Contract)T00039-88-C-0292

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
22 MAY 1990 2. REPORT TYPE

3. DATES COVERED
 00-00-1990 to 00-00-1990

4. TITLE AND SUBTITLE
Pythia: A Parallel Compiler for Delirium

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Pythia is an optimizing compiler for the coordination language Delirium, written in Delirium. It is part of
the Madness project, which investigates both an alternative to the traditional dataflow model and an
alternative to the traditional dataflow implementation strategy. Delirium embeds imperatively defined
operators within a functional context, giving the programmer control over the granularity of a
computation. The application’s control structure is expressed using powerful functional-language
constructs like closures and function valued parameters. The bulk of actual computation, however, is
expressed in a convenient imperative language. Pythia performs traditional optimization strategies like
macro-expansion, common expression elimination, and constant propagation.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

52

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Contents

1 Introduction

2 The Model

3 Delirium: The Language

3.1 The Basic Language

3.1.1 Atoms

3.1.2 Multiple Values .

3.1.3 Let Bindings ..

3.1.4 Function Application .

3.1.5 Conditional

3.1.6 Iteration .

3.2 Operators

3.3 Macros ..

3.4 Example.

4 Programming Methodology

4.1 Large Data Structures

5 Compilation Strategies

5.1 Basic Compilation ..

5.1.1 Function Definition .

5.1.2 Function Application .

5.1.3 Let Bindings

5.1.4 Conditionals

5.1.5 Iteration .

5.2 Optimization ..

5.2.1 Inline Expansion

5.2.2 Common Sub- Expression Elimination (CSE)

5.2.3 Constant Propagation

5.2.4 Dead Code Elimination

6 The Compiler Design

1

2

3

5

5

5

5

7

7

7

8

10

11

12

13

15

15

15

16

17

17

19

19

19

21

21

22

22

6.1 The Tree Data Structure .

6.2 Tree Walking Operators

6.3 Compiler Passes

6.3.1 Building the Tree .

6.3.2 Macro Expansion .

6.3.3 Environment Analysis

6.3.4 In-Place Expansion ..

6.3.5 Constant Propagation

6.3.6 Mark Used

6.3.7 Common Sub-Expression Elimination

6.3.8 Graph Generation . . .

6.3.9 Dead Code Elimination

6.3.10 Graph Output

7 Performance

7.1 Pythia as Application

7.2 Graph Optimization

8 Conclusions

9 Appendix I: The Figures

10 Appendix II: BNF Grammar

11 Appendix III: Pythia - the Delirium Code

12 Appendix IV: BNF For Intermediate Form

22

23

26

26

27

27

29

30

30

31

31

31

31

32

33

33

35

39

40

42

45

1 Introduction

Pythia is an optimizing compiler for the coordination language Delirium, written in

Delirium. In addition to serving as a necessary tool, the compiler has two design goals:

to demonstrate dataflow graph optimization strategies and to prove that Delirium is able

to conveniently express the control structure of a complex parallel program. Parallel tree

walking is shown to be a useful methodology for parallel computation which is easily

described in Delirium.

Dataflow [1, 2] is an attractive model for parallel computation because it does not

introduce artificial sequencing dependencies. A dataflow language compiler translates a

program into a graph, where nodes in the graph (called actors) represent computations

and arcs represent data dependencies. There are two major problems that have prevented

dataflow from being accepted: scheduling overhead and data structure decomposition.

Steve Lucca and I worked on a project we called Madness, in which we developed

a modified dataflow paradigm that attempts to address both of these difficulties. We

were motivated by a desire to give the programmer control over important decisions and

to reduce system overhead to the practicable minimum. Section 2 describes the model

in detail and section 3 covers Delirium, the functional language on which the system is

based. We call Delirium a coordination language, because the programmer uses it to

coordinate a set of sub-computations rather than to express computation directly.

We are in the process of implementing various applications within our model to test

its usefulness. The two most important parts of our development environment are the

run time system and the compiler. In our initial work, we developed two compilers

and two run time systems; as our ideas were expanded and refined, we found that the

original designs were inadequate. The second incarnation of the run time system, which

we named Obsession, has proven to be flexible and efficient. It takes advantage of an

idea we call template activation to achieve excellent performance on a general-purpose

shared memory machine. The run time system currently runs on the Sequent Symmetry,

the Cray 2, the Cray Y-MP, and the Butterfly TC2000. This paper does not cover the

implementation of the run time system, other than to give the performance measurements

that affect compiler optimization decisions.

The second version of the compiler, while adequate, was based on a straight-forward

translation with a minimum of analysis. We were intrigued by the notion of applying

traditional optimization techniques to dataflow graphs, an idea that has been explored

by other researchers [19]. Rather than extensively modifying the existing compiler. I

decided to rewrite it in Delirium. Pythia is at the same time a useful tool and an

interesting application.

Developing a usable compiler in a functional language is something of a challenge,

because traditional implementation techniques rely on incremental update of a parse

tree that represents the program being compiled. Incremental modification is difficult

for functional languages to handle efficiently; existing proposals, like !-structures [3],

have not been too successful. Pythia poses the added challenge of parallel execution.

1

The solution to both problems was the same: base all expensive computations in

the compiler on a small set of parallel tree walking primitives. Trees are very tractable

structures for parallel processing because they have a regular structure that can be easily

decomposed into independent units. However, a parse tree usually has a variety of an­

notations that create non-tree-like dependencies. If these links were carelessly traversed,

two execution threads could come into conflict and corrupt the integrity of the tree. The

walking primitives establish rules that prevent such conflicts from happening; any prim­

itive that obeys the restrictions is guaranteed to have deterministic behavior regardless

of the number of processors that perform the tree walk.

There are three tree-walking primitives, which are described in detail in Section 6.2.

Taken together, they are sufficient for expressing all the traditional parse tree manipu­

lations. Each guarantees an execution order over the tree that allows efficient parallel

execution. The most important guiding principle in designing the compiler was to es­

tablish and obey the restrictions on the traversal behavior and dependencies of each

pass. Having grown accustomed to using the walking primitives, I found each pass rela­

tively straight-forward to implement. The only major change in design from a sequential

compiler was the need to split a few passes into a marking and an execution phase.

Our experiences with the compiler (Pythia) and a set of other applications have con­

vinced us that Madness is a useful programming model for a broad range of applications.

vVithout excessive effort, we have been able to write parallel programs that achieve good

performance, using programming techniques that are in many ways similar to traditional

structured programining.

2 The Model

A traditional dataflow program is converted into a graph, where each node represents a

primitive computation. These primitives are generally simple (or light-weight) operations

like addition and list manipulation. The run time system is responsible for scheduling

the primitives when the data upon which they operate becomes available. 'When an

operation that executes for a fraction of a micro-second is being scheduled, clearly the

scheduling overhead must be extremely low or the overall performance will be very

poor. To address this problem, data-flow researchers have proposed various specialized

architectures that handle scheduling in hardware. Even with extensive support, however,

a flexible language is difficult to implement efficiently.

One solution has been to use static scheduling, a technique for determining the entire

primitive execution schedule at compile-time. Unfortunately, this is only feasible if severe

restrictions are placed on the underlying language, and has proven useful only in a few

specific application domains (notably digital signal processing [13]).

An obvious alternative approach is to put more complicated (or heavier) compu­

tations in a node. Our idea is to allow the programmer to write primitives in any

imperative language (like C or Fortran), as long as the effect of the primitive as a whole

2

is functional. Within the node, however, the full power of the imperative language is

available (with a few exceptions that are explained below). The application consists of

a large number of primitives that are invoked by a web of functional control structures.

The bulk of a Delirium program is written in the familiar imperative language; we have

found that the easiest strategy is to write the entire application that way at first. The

careful programmer can then replace the top level of the application with functionally

equivalent Delirium code, yielding a relatively painless transition to parallel execution.

This is how Pythia was implemented.

Traditional dataflow languages also have difficulty managing large data structures.

The normal strategy in imperative languages is to make a series of small (and often

related) modifications to various parts of the structure. Current dataflow languages make

it awkward to express such updates; even more serious, performance is dismal unless the

compiler is clever enough to avoid unnecessary copying (Cann's thesis [4] describes a

variety of analysis techniques). By taking advantage of shared memory architectures, we

are able to use high-level functions to decompose structures, operate on the pieces, and

recombine them efficiently.

Our research into efficient execution of Delirium programs has focused on shared

memory multiprocessors. All of the most commonly used supercomputers (like the Cray

2 [5] and Cray Y-MP) have this architecture. We believe that during the next decade

personal workstation design will move in the same direction. The relative ease with

which shared memory operating systems can be constructed, the utility of such systems in

typical workstation tasks (such as the compilation of multiple files), and th·e large number

of shared memory projects all support this conclusion. The latter include commercial

machines like the Sequent [8] and workstation research projects like the Spur [11] and

the Firefly [20].

Delirium has a significant advantage when executed on supercomputers, because the

operators can be expressed in a traditional language to take advantage of vectorizing com­

piler technology that is already well understood. Furthermore, existing programs written

in those imperative languages can be much more quickly parallelized under Delirium than

any system that requires programs to be expressed in a new notation.

3 Delirium: The Language

Delirium is a functional language without built-in primitives. The programmer uses

it to describe the control structure of the application, taking advantage of powerful

constructs like closures and function valued parameters. Actual computation is done by

the operators, which can be written in several languages including C, FORTRAN, and

compiled Common Lisp.

The earliest dataflow languages were fairly primitive, because the specialized archi­

tectures that were designed to support them (like the Manchester machine [10]) could

only manage simple tokens. The notion of embedding a graph within a token did not

3

emerge for some time and is still not embraced by all of the dataflow community. The rest

of the functional language community quickly moved to first class functions (described

below) and other elegant refinements in languages like ALFL [12].

As mentioned in the introduction, one of the goals behind Madness was to investi­

gate a new execution strategy for dataflow graphs that we felt would be efficient on a

general purpose computer. This strategy supports tokens that represent expandable sub­

graphs, freeing us to include in Delirium features that are common in modern functional

languages.

One feature in modern functional languages that we have not incorporated in Delir­

ium is rich support for type declaration and inference- the language is untyped. However,

operators can optionally be annotated with type declarations which are enforced by the

run time system. We have not used the declarations for our existing applications; type

checking proved to be quite unnecessary for the compiler, though it would have identified

one or two easily discovered bugs.

Constructs in Delirium are similar in spirit to those found in other languages like

ALFL [12] and VAL [15]. The programming style is quite different, however, because of

the lack of built-in primitives. The high level control of the application is described in

Delirium, providing a way for computation to be spread easily across the processors in a

parallel machine. The programmer must be careful to use destructuring operators when

dealing with large data structures, or there will be little improvement over sequential

code. The design of the compiler itself is one example that demonstrates the kinds of

strategies available to the Delirium programmer. .

A Delirium program consists of a group of functions, one of them called main. Func­

tions are first class objects, meaning that they may be passed as arguments, bound to

variables, or returned as values (Section 5.1.1 describes functions in detail). Dynamic

graphs are important, because they allow a wide variety of control constructs to be ex­

pressed compactly. Dataflow languages without support for graph expansion have great

difficulty with unpredictable execution strategies like recursion. The Delirium run time

system has extensive support for managing dynamic graphs efficiently.

Functions can be applied to arguments and are curried if fewer arguments are supplied

than were expected. A function of two arguments a and b can be applied to a single

argument x. The result is a function of one argument that has the binding of a to x

bound within it. When this new function is applied to an argument y, the result is the

same as that of applying the original two-argument function to x and y at once.

Delirium also supplies a macro facility, something used in other languages as a no­

tational convenience or to control evaluation of arguments. In Delirium, macros are

intended primarily for convenient operation on large data structures.

4

3.1 The Basic Language

One advantage of functional languages is their fundamental simplicity. Only a few con­

structs are necessary to provide a rich programming framework. This section describes

the ba.sic structures in Delirium (see Appendix II for a BNF grammar). Each structure

is a different type of value-producing expression. A Delirium program consists of a set

of functions, one of them called main. A function definition consists of a name, an ar­

gument list in parentheses, and a body. The body is an expression, which is evaluated

when the function is applied. Here is a simple example:

main()
start_things_rolling(42)

3.1.1 Atoms

The simplest expressions in Delirium are either constants or binding references. Constant

types are integers, strings, and floating point numbers. Some examples:

an_integer_operator(34)

a_string_operator(''hello'')

a_float_operator(-345.23)

H a variable appears, the name must be bound in the surrounding environment, using

standard lexical scope rules.

3.1.2 Multiple Values

Because functional languages eliminate global variables, it is especially useful for them

to allow multiple value return. This is even more true in Delirium, which depends on

destructuring operators to divide large data structures into many pieces that can be

processed in parallel. The synta..x is simple:

<expl,exp2,exp3 ... >

where the comma separated values may be any valid expression. This package can

be pa.ssed around a.s a single value; its components can be separated only within a let

binding a.s described below.

3.1.3 Let Bindings

The let binding associates identifiers with expressions. Its syn_tax is:

5

let
<var> = <value>

in <expression>

A binding can also be used to subdivide a. multiple value:

let
<a,b,c> = op_that_yields_multiple_value(12)

<d,e> = c
in do_something(a,b,c,d,e)

In this example, the vaxia.ble c must be a. multiple value package or an error will

be signaled at run time. To manipulate packages, we have provided a. set of operators

like car, cdr, cadr, etc. These axe simple to write and a. different set could be defined

quickly by a. Delirium programmer if desired.

The last kind of let binding creates a. function, eliminating the need for a "lambda"

construct by making it easy to define functions where they axe needed. The syntax is:

let
<name>(<arg>, <arg>, ...)=<body>

in <expression>

Within the expression making up the body of the let, a. new function has been defined.

Nested bindings axe scoped in sta.ndaxd lexical fashion.

Each of the expressions on the right hand side of the equals sign can refer to any

of the variables or functions bound in that let statement (some dialects of LISP, like

SCHE1-IE [1 i], call this construct a. letrec). For example, this is a legal code fragment:

let a = salt(15)

salt(x) = if imdone(x) then 10
else salt(next_value(x))

in figure_something_out(a)

Of course, if imdone and next_value are not correctly written, this expression may

not terminate. A value will be returned if imdone(15) is true or if imdone(exp) is true,

where exp consists of some finite number of next_value applications on to the original

value of 15.

Mutually recursive functions are also legal, as in:

6

let salt(x) = if imdone(x) then x
else pepper(next(x))

pepper(y) = if hesdone(y) then y
else salt(next(y))

in
salt(give_start_value())

3.1.4 Function Application

A function ca.n be applied to a comma-separated list of arguments. This causes the

evaluation of the body of the function, replacing uses of the formal parameters with the

corresponding actuals supplied by the invocation. As explained above, automatic cur­

rying is performed if too few arguments are supplied. Operator invocation has identical

syntax a.nd is evaluated by calling the operator on the supplied arguments.

3.1.5 Conditional

The syntax for the conditional is:

if <exprl> then <expr2> else <expr3>

where <exprl> must evaluate to a.n integer. As in C, a zero value is false a.nd a

non-zero is true.

3.1.6 Iteration

The iterate construct syntax is:

iterate
{

<iter-variable>= <initial-value-expr>, <update-value-expr>

}

while <expression>, result <expression>

Evaluation begins by binding each iteration variable to its initial value. If the con­

ditional expression is true, each iteration variable is bound to the value of the update

expression. The conditional expression is re-evaluated. The looping ends when the while

expression is false; the final value of the iterate construct is the expression appearing

after result.

7

3.2 Operators

An operator in Delirium is a procedure written in an imperative language like C or

Fortran. Each node in the dataflow graph has a corresponding operator, except for a few

types that are handled by the runtime environment directly. An example of the latter is

a function application node, described below in detail. Aside from these special cases, a

normal node has some number of inputs, each corresponding to one of the arguments of

the function. Some operators return more than one value, in which case the programmer

must use a special syntax because languages like C do not support multiple value return.

For the purposes of scope, operators are considered to exist as undeclared top level

functions. Normal scope rules apply, so the visibility of an operator named salt would

be obscured by a let binding with the same name.

There are a few restrictions on operators. They are intended to work functionally, so

they are not permitted to use static or global variables. Each time an operator is invoked

on the same input, it should return the same output, just as any primitive in a functional

language does. This raises a few difficulties- I/0, for example. The traditional solution,

in languages like VAL [16], is to this problem is to use streams. Input and output values

are packaged as a stream of values. The programmer can get the head of a stream (its

first value), the tail (the rest of the values), can append streams, etc. We have provided

a traditional stream library with Delirium that is designed to interact with the UNIX

file system.

Another problem with functional operators is that non-determinism is difficult to

manage. We felt that non-deterministic operators might be an interesting experiment,

so we allow the programmer to annotate an operator to that effect. This prevents Pythia

from changing the number of calls to that operator through optimization. For example.

suppose that we define a non-deterministic operator random that computes a random

number using some external criteria as a seed. This violates the functional model, so

it is no longer legal to assume that two seemingly identical applications of random will

return the same result (and it would be a rather poor random number generator if they

always did!). Pythia, warned by the non-deterministic annotation, will not optimize the

two calls into a single one as it normally would, routing the value of a single call to both

uses. Instead, the output sub-graph would contain two separate nodes representing the

different calls (unless either or both were eliminated as dead code- see below).

While operators can be written in any language that can be cross-linked to C, we

have provided a pre-processor that makes C operators much more convenient to write.

Here is a simple example:

float max(vall, val2)

float vall, val2;
{

if (vall > val2)

return(vall);

else

8

return(val2);

}

The preprocessor modifies the code, replacing return with code that fills a special

token structure with the return value. It also creates a separate file listing all the

operators and the types they expect as arguments and return as values. To return

multiple values, the programmer lists them as arguments to return, separated by commas.

The list of types precedes the function, also separated by commas. For example:

STREAM, int check_next(s)

STREAM s;
{

}

if (satisfies_test(head(s)))

return(tail(s),TRUE);

else
retupl(s,FALSE);

The operator checks to see if some test is satisfied; if so, it returns the rest of the

stream and TRUE, indicating that one value of the stream has been consumed. Otherwise

it returns the original stream and FALSE. Note that we have provided versions of all the

stream primitives that are callable directly by C routines.

Sometimes it is convenient to have an operator that can have different numbers of

arguments. In such cases, we supply a set of macro definitions that are more flexible

than a static declaration. Here is the last example again, using the C macros for input

and output:

check_next(s)
{

}

STREAMs= GET_INPUT(O,STREAM);

if (satisfies_test(head(s))) {

DO_OUTPUT(O,STREAM,tail(s));

DO_OUTPUT(l,int,TRUE);

}

else {
DO_OUTPUT(O,STREAM,s);

DO_OUTPUT(l,int,FALSE);

}

This version of the macros includes type declarations. which are dynamically checked

at run time.· A different version dispenses with the declarations, placing that responsi­

bility on the programmer.

9

One final annotation supported by the pre-processor is destr. This notifies the run

time system that the specified argument to the function might be destructively modified.

Because memory is shared, any number of operators can have read-only access to a data

structure through pointers. The run time system keeps a reference count on tokens; any

token that enters an operator through a destr input will be guaranteed to have no other

references. This restriction is enforced by copying the structure when more than one

reference currently exists.

Destructive inputs allow very efficient updating of a data structure through side­

effects, while still maintaining the purity of the functional model. The programmer who

is concerned about efficiency must avoid copying by ensuring that only one copy of the

token to be modified will exist when it enters the destructive input. Here is an example

of an operator that destructively increments a particular element in a vector:

VECTOR •increment_vector(vector, position)

destr VECTOR •vector;

int position;
{

vector->contents[position] += 1;

return(vector);
}

3.3 Macros

An important goal of the Delirium language is to support convenient ways to manipulate

large data structures. The macro facility is helpful, a.s can be seen from an example.

Suppose we wish to perform parallel computations on an array using a fork-join control

structure. To avoid repeating the same construct many times, the general idea can be

expressed a.s a macro:

macro map(array,op,extra_arg) =
let <s1,s2,s3,s4> = array_split(array)

in array_gather(array_apply(op,sl,extra_arg),

array_apply(op,s2,extra_arg),

array_apply(op,s3,extra_arg),

array_apply(op,s4,extra_arg))

A macro invocation is replaced by the body of the macro, substituting arguments.

The following call:

map(an_array,flatten,histogram)

ha.s the same effect a.s:

10

let <sl,s2,s3,s4> = array_split(an_array)

in array_gather(array_apply(flatten,sl,histogram),

array_apply(flatten,s2,histogram),

array_apply(flatten,s3,histogram),

array_apply(flatten,s4,histogram))

map applies some primitive operator to each element in an array. The programmer has

decided that for this application, a good grain size is achieved by dividing the array into

four pieces. The operator array _split takes an array and returns four commands, each

of which is handed to array _apply. The second argument is a reference to an operator or

function that expects two arguments. array_apply walks its piece of the array, applying

the operator to each element along with the extra argument (histogram in the example).

Depending on the operation being performed, array _apply or array _split might create

a second array into which the result of each operation is placed. The four returned values

are handed to a combining operator and the final result returned.

Because we are using a shared memory machine., array _split and array _gather

typically need to do no copying. In general, one of the two must allocate a second block

of storage that is the same size as the array so that the results can be stored without

modifying the original (and thus violating the single-assignment restriction). However,

if array _split marks its array input as being destructive, and no other copies of the

array exist in the system, the extra storage allocation can be avoided. It is up to the

programmer to insure that these conditions hold if allocation and copying overhead would

be undesirable.

3.4 Example

Here is the entire Delirium code for a simple circuit simulator, demonstrating high-level

functions and data structure decomposition:

main()
let

ntimesteps=SO
init_gates=read_gates()

wires=read_wires()

in iterate
{

gates=init_gates,map(gates,simulate_gate,wires,i)

i=O,i+l
}

while less_than(i,ntimesteps), result gates

The map macro is a slight variation on the one given above, in that it takes two

extra arguments rather than one. Seven imperative operators are invoked: read_gates,

11

read_wires, array _split, array_apply, array ..gather, simulate..gates, and less_than.

After reading in the circuit to be simulated, we do fifty steps of iteration.

The work of simulating one circuit element is done by the operator simulate-gate.

Here is the C code for it:

GATE *
simulate_gate(gatep,wires,timestamp)

destr GATE •gatep;

ARRAY •vires;
int timestamp;
{

}

int new_val;

if (gatep->delay_count > 0)

--gatep->delay_count;

else
(•gatep->output_fn)(gatep,timestamp,wires);

nev_val = (•gatep->compute_fn)(gatep,timestamp,wires);

if (new_val != gatep->logic_val) {

if (gatep->delay_count > 0)

}

printf("error: logic val change in< 1 prop delay\n");

else {

}

gatep->delay_count = gatep->prop_delay;

gatep->logic_val = nev_val;

return(gatep);

The simulation repeatedly computes a new value for the output based on the input.

waiting some number of time steps before a changed value is passed onwards because of

propagation delay.

4 Programming Methodology

We have found that the principles of designing a Madness program are sometimes quite

similar to traditional software engineering techniques. In a C program, a sign of good

design is that the main() routine does not do much but call procedures and has few or

no global variables. Converting such a program to run under Madness is quite straight­

forward. Because global variables are outlawed, any function that needs values from the

12

environment must receive them as arguments and return them when finished. The up­

dated values are then passed to subsequent operations that require them. This sequenc­

ing in Delirium code automatically forces the appropriate ordering on the operations.

We have found that there are two common types of parallelism. The first is a group of

tasks that can be done at the same time because they do not depend on each other. When

the main routine is converted to Delirium, independent tasks immediately parallelize

because none depends on the results of the others. If each task is a Delirium function,

the various calls are performed in parallel.

The second type of parallelism, much more common, is not so easy to exploit. It

has to do with operations performed on data structures. If expressed in traditional

imperative programming style, unnecessary dependencies are created that are difficult

to find.

4.1 Large Data Structures

One of the most important issues that must be addressed by a parallel programming

language is the management of large data structures. In general, a parallel program is

much more difficult to write than its sequential counterpart. Most applications that are

time-consuming enough to merit such a painful conversion involve large data structures

like trees and arrays.

Many languages have found that "apply-to-all" operations make it easy to express

complex manipulations of data structures; APL [7] is a notable example in that almost

the entire language is made up of a set of operators that perform a regular operation over

an entire array at once. Anyone using such a language quickly realizes the opportunity

for parallelism that exists in each operation.

An apply-to-all really consists of two parts: an ordered traversal of the data structure

and an operation that is to be performed during that traversal. Different computations

rely on different aspects of the traversal order. For something like file uncompression, an

algorithm might depend on all prior history to decode a particular piece in the middle

(though commonly used approaches do not, because of vulnerability to errors). On the

other hand, in a cellular automaton simulation, a given cell only depends on the values

of its immediate neighbors. The former is difficult to implement in parallel while the

latter is simple.

To take an easy case first, imagine that we wish to compute a new array from an

existing one by adding three to each element. Rather than doing the addition directly,

we could define a function add_three:

for rows = 1 to ROWNUM

for cols = 1 to COLNUM

array2[i,j] = add_three(array1[i,j])

The advantage to the reformulation is that it can be used with an apply-to-all oper-

13

ator.

array2 • do_on_each_array_element(arrayl,add_three)

We can define an entire suite of functions like add_three, all of which expect to

be called on a single element of an array and that return an updated element. ·when

combined with a set of parallel apply-to-all operators, the update functions allow a variety

of powerful array manipulations to be expressed compactly and executed efficiently in

parallel. The programmer can write functions that expect an element and return an

element, unconcerned about whether they will be called during a parallel array walk or

a sequential one. The parallel application operators can have different versions, each

carefully tuned for a different architecture.

A more complicated walker will handle operators that rely on certain ordering prop­

erties. For example, an operator might rely on sequential execution within a given row;

the walker can accommodate this by traversing many rows at the same time while still

enforcing the constraint that each row be done sequentially.

Going back to the simple example that operates on each array element, there are still

two problems. The first is that an apply-to-all is far too inefficient, if every element is

done on separate processors, because of the communication overhead. This is solved in

Delirium by divide an array into pieces and handling each piece entirely on one processor.

The array example earlier in this paper shows how this can be done. The code to invoke

the array walker need not concern itself with such details, however, as it is only concerned

with the ordering dependencies guaranteed by the walker.

The second problem is that this section has assumed two arrays, where the results

of operating on the first are placed into the second. When very large arrays are being

used, it can be unacceptable to require that enough storage be allocated for two copies.

Furthermore, if only a small amount of data is to be changed, it is absurd to require that

the rest be copied. To solve this problem, we have destr arguments; they notify the run

time system that the same storage will be used for an incoming token as an outgoing

one. The semantics from the functional standpoint are that the original data structure

is cast aside and a new one returned, but in fact the space is reused. The integrity of

the model is maintained because its only requirement is that changes made within one

operator cannot affect another. If a data structure that goes into a destructive argument

is referenced anywhere else in the dataflow graph, a copy is made.

Our general approach for managing large data structures is to define an operator

to divide the structure into appropriately chosen pieces, another to operate on each

piece, and a third to merge the pieces. The operator being applied to each element

of the structure relies on the ordering dependencies of the process as a whole; a given

implementation of a walker can be based on the characteristics of the target machine.

14

5 Compilation Strategies

Having discussed Madness programming in general terms, I will give a large concrete

example by explaining how the compiler is implemented. First, though, it is necessary

to understand the transformation that the compiler performs.

The run time system expects a group offunction templates, each with a corresponding

graph. Each of these templates describes a closure - a piece of executable code and

the environment in which that code is to execute. The code in this case is a dataflow

subgraph, and the environment is a set of bindings for the free variables used by the

subgraph. The template description includes the subgraph as a list of nodes with arcs

between them, the environment bindings needed, and a set of arcs to route constants.

function arguments, and environment values. The task of the compiler is to convert a

set of functions into a set of templates.

5.1. Basic Compilation

There are five primitive constructs of the language that must be converted appropriately.

Once the graph is constructed, it is optimized in various ways. The final result is then

output to a file in a special format recognized by the run time system.

5.1.1 Function Definition

As a first approximation, imagine that all function definitions convert to exactly one

closure template. If the compiler were to adopt this approach, the output graphs would

be rather inefficient due to function management overhead. Later optimization passes,

as described in Section 5.2, improve matters by collapsing functions together. For now,

however, we will make a few simplifying assumptions.

Functions are normally defined within a let statement. The function may use iden­

tifiers that are defined outside of its body; these are called "free variables" and the

compiler must ensure that the values are available when the function is applied to some

arguments. Because functions can be bound to variables and passed as arguments or

return values, the program may invoke a function outside the lexical context where it was

defined. The environment variables used in the function's body are no longer present,

but they are needed to carry out the evaluation.

The solution is to pass around more than simply the function: the function is packaged

together with an environment containing bindings for all the free variables needed. This

package of function and environment, a closure, is constructed by a special kind of

dataflow graph node called the closure constructor. Each function in the program is

compiled into a template, the inde..x of which is given to the constructor to put into the

closure. In addition, the value of each free variable is passed in. The operator packages

this inf9rmation together and outputs a token containing the closure. Such a token may

be passed around the graph just like any other.

15

Figure 1 demonstrates the creation of a closure for black, based on the following

code fragment:

let basil = 6

black(x) = some_computation(x,basil,salt,pepper)

in
blue(black)

The identifiers salt and pepper must be bound within the environment when this

fragment is evaluated.

Functions defined at the top level are handled somewhat specially, because they

are not created within the framework of an existing function. Each top level function

is converted into a template with no external bindings, and any reference to another

top-level function is resolved at compile time. The system is not (yet) interactive, so

incomplete binding is not permitted.

5.1.2 Function Application

A function application is handled by another special operator called an expander. There

are two types of invocation; if the called function is known and doesn't need a closure,

we embed its template index in the graph and do the call directly. If a closure is needed,

the token that represents it is passed to the expander, along with any arguments for the

called function. The expander has the effect of replacing itself in the data.fiow graph

with the expanded graph of the passed-in closure. The template contains information

about which of its nodes needs each environment variable and argument; the run time

system handles the bookkeeping when an expander is scheduled for execution.

If an insufficient number of arguments are provided, the expander automatically

creates a curried function. This new function expects the remaining arguments needed

by the original one, executing as expected when they are provided.

Figure 2 demonstrates the effect of an expander node when entered by the closure

created for black in figure 1. In this case, the closure was invoked with the argument

100 as in:

let blue(func_arg) = func_arg(lOO)

in
<the previous fragment>

To evaluate a function invocation, the system must have access to the free variables

and the arguments. The former are carried around in the closure, which is created at

the time of function definition. Because Delirium is a functional language, environment

values can not be changed by execution as they might be in an imperative language.

The arguments are supplied to the expander node at the time of invocation, as shown

in the figure.

16

5.1.3 Let Bindings

Each variable binding in a let generates a subgraph corresponding to the expression on

the right hand side of the equals. Each use of a let-bound variable represents another

arc from that subgraph. The subgraph result may be sent to an arbitrary number of

target nodes within the function template.

Figure 3 shows the dataflow graph that corresponds to the following code fragment:

let red = <exprl>
green = <e'Xpr2>

purple = <expr3>

in
some_operator(14,red,green,purple)

Multiple variable bindings are a little more difficult:

let <red,blue> = operator(x)

in someother_function(red,blue)

Delirium semantics requires that operator return a multiple value package with two

elements. Such packages are first class, so if x was defined elsewhere to be a two element

package operator could legally pass it through. The compiler looks up the definition for

operator to decide how to convert the construct. If operator returns only one value,

that is assumed to be a package and is automatically routed to a decomposition operator

with two outputs. If operator returns two values, they are used directly. Any other

number of outputs is an error.

If an operator that returns multiple values is ever used outside of a multiple value

binding, its outputs are automatically routed to a package constructor and the package

is considered to be the return value.

5.1.4 Conditionals

There are also two control constructs, the first of which are conditionals. Compilation of

conditional expressions is a bit complicated. There are two main sources of difficulty: the

dataflow model used by Madness and a desire to avoid unneeded computation. Graphs

are executed very quickly by the run time environment due to a strategy we call ''template

activation," which is detailed elsewhere [14]. This strategy is based on the idea that a

node fires when all of its arguments have arrived. The other complication is that one

of the two clauses of a conditional will not be needed. In our experience, it is almost

universally true that the test clause requires much less computation than the two result

clauses. We therefore decided to evaluate the test clause first, followed by only the

appropriate result clause. Obviously we could evaluate both and choose the result at the

17

end, but we felt a. more efficient policy was worth the extra work necessary to implement

it.

We had to add one departure from the pure dataflow model to accomplish our goal:

null tokens. These are tokens that do not have any value and are used simply as place­

holders to cause a node to fire. The simplest way to use null tokens would be to let

them cascade through the graph, handled as a. special case by the run time system to

avoid any operator execution. We decided to improve on that by introducing null token

forwarding as well. Any arc in the graph can be annotated with a forwarding address;

when the run time system is about to output a null token onto an arc with forwarding,

the token. "jumps" directly to the specified arc. With this facility in place, we can now

compile conditionals efficiently.

Because we are dealing with a dataflow graph, any node with only constant inputs

or with none is scheduled for execution as soon as a template is expanded. We would

have needed major changes to our model to prevent that from happening. However, we

suspect that most long computations will require input from the environment, and these

we can prevent from e..xecuting by introducing a new kind of special node we call a. gate.

There is one gate each for the true and false clauses, and any variable binding used by

either is routed through the gate. Each gate also has an input from the test expression;

the gate favored by the test (the true gate if the test is true, the false gate otherwise)

outputs the values of all the environment bindings routed through the gate. The other

gate outputs a. null token along the first output arc.

The first output arc of each gate is set up to forward null tokens to the appropriate

input of another special kind of node called a collector. The collector has two inputs,

passing through the non-null token.

While this strategy does not totally eliminate unnecessary computation, we are confi­

dent that most cases will be caught. A careful programmer can ensure that a particularly

expensive computation will not be unnecessarily computed by referencing any environ­

ment variable.

The strategy is most easily understand with a graphical example. Figure 4 shows the

graph that corresponds to the following code fragment:

let x = 12
in

if iseven(x) then <true expr>
else <false expr>

The fact that x is passed to the expression graphs through the gates indicates that

both expressions use the binding.

18

5.1.5 Iteration

Traditional iteration does not fit within a functional context. Delirium uses the same

solution that was adopted by dataflow languages like SISAL [16], where each "iteration"

is a function call. The value of the iteration variables can be updated each pass through

the loop without violating the functional model. The iteration function is always tail

recursive, so the compiler will mark the call appropriately. Tail recursive calls are handled

very efficiently by the run time system, costing little more than a normal node scheduling.

Scheme [17] uses the same approach to handle iteration. Here is an example of the

conversion:

iterate {

}

x = "alpha", succ(x)
y = "joe", parent (y)

while not_done(x,y), return y

is converted to:

let iterator(x,y) =
if not_done(x,y) then iterator(succ(x),parent(y))

else y

in
iterator("alpha", "joe")

5.2 Optimization

One of the main goals of Pythia was to explore the optimization of dataflow graphs

using standard compiler techniques. Out of the many candidates for inclusion. I chose

four that seemed particularly applicable. There are others that might have been worth

including, such as strength reduction. but they require a great deal more analysis of the

operators than is currently feasible. The pre-processor would need to be much more

sophisticated if such optimizations are to be done.

The use of standard optimizations on dataflow graphs has been discussed in the

literature [19] [18]. This seems like a useful area for further research, as the future of

functional languages depends heavily on improved compilation strategies.

The following sections describe each of the optimizations performed by the compiler.

Section 6.3 gives a detailed explanation of the implementation.

5.2.1 Inline Expansion

A function application involves a fair amount of machinery to create and expand the

corresponding closure, so it is often more efficient to expand small functions in place.

19

To make a closure, the environment bindings must be passed to a constructor node and

the output token then given to an expander. Closure construction is quite fast, but

expansion involves more overhead (see Section 7 for the costs of various run time system

actions).

Some programmers use a locally defined function as a notational convenience, equiv­

alent to a local lambda in LISP. There can be many such functions and it would be

inefficient to convert each into a closure. The compiler uses a simple heuristic to decide

whether to expand a call. If the function requires a closure, it will have been marked

in a previous analysis pass and no expansion is done. Only relatively small functions

are expanded, to prevent exponential growth of a call-intensive program. The cut-off

parameter is tunable through a command line argument; after some experimentation,

we have settled on a 10 node subtree as the largest function to expand and that seems

to work well. We expect to try a range of values as we move to other large applications

with differently structured Delirium source. The number may be somewhat architecture

dependent as well, though this has not been true on our existing platforms.

To gain the maximum benefit from inline expansion, Pythia does it repeatedly until

fixpoint (i.e. the pass executes without making any changes). The general idea is that

call sites suitable for expansion are marked in a first pass over the tree. Two expansions

must not come into conflict with each other, so Pythia does not expand a call if there

is any possibility that a call site within the called function will also be expanded during

this pass. Avoiding the problem requires a recursive traversal of the called function.

After all sites are marked, an expansion pass replaces each marked call with the body

of the function. To avoid scope difficulties, a let is wrapped around the copied body

with appropriate renaming. Here is a fragment that demonstrates the problem:

let misc(y) =
let x = 10
in some_func(y)

X = 20
in misc(x)

After the straight-forward expansion. we would get the following:

let x=20
in let x=10

in some_func(x)

Notice that someJunc is called with the value 10 instead of the original 20. The

difficulty is caused by the let binding within the body of mise that has the same name

as the actual parameter in the call. The solution to the problem is to do a systematic

renaming of the formal parameters. Each of the argument expressions is bound to the

new name and references are modified during the copying. A correct expansion of the

last example would be something like this:

20

let x = 20
in let y_1234 • x

in let x • 10
in some_func(y_1234)

The renaming guarantees that some...:func will see the correct value regardless of

scope problems. The extra level of indirection introduced by the let ha.s no effect on the

number of nodes in the final graph, because variable let-bindings are collapsed during

compilation without adding any overhead.

5.2.2 Common Sub-Expression Elimination (CSE)

CSE is particularly useful and straight-forward in a functional language because no side­

effect analysis need be done. It is somewhat less useful in Delirium, which is used to

express control structure rather than computation and is less likely to contain many

suitable sub-expressions. However, I decided that CSE wa.s worth implementing because

it is a traditional optimization and could be useful if numerous symbolic constants were

used. The process is the same for Delirium a.s for any other functional language- if two

expressions look the same (after substitution for free variables), they are guaranteed to

evaluate to the same result. The only exception is non-deterministic operators, which

prevent CSE from being done.

Notice that CSE corresponds to finding the common expressions and binding them

in a let. For example, the following code fragment:

let x = computel(update(john))

y = compute2(update(john))

in
compute3(x,y);

can also be coded this way:

let temp = update(john)

x = computel(temp)

y = compute2(temp)

in
compute3(x,y)

5.2.3 Constant Propagation

Delirium constants include integers, rea.ls, and strings. When they appear, the compiler

can sometimes trim the size of the graph by propagating them through bindings and

applications.

21

5.2.4 Dead Code Elimination

Code that is "dead" (i.e. unused) is easily identified in dataflow graphs because by

definition there is no path from the dead node to the function's return node. This could

happen if a let binding is created but not used in the body, for example. In terms of

traditional flow graphs, a node will be pruned if its result does not reach the return node.

Pythia will eliminate calls to non-deterministic operators that do not contribute to

the final value, so side-effecting dummy calls must pass their return values to some

expression that affects the function's return value or those calls will be removed.

6 The Compiler Design

The compiler is conventional in basic design, involving multiple passes over an abstract

syntax tree. However, incremental updates to a large tree are not natural operations to

perform in a functional language. Imagine a compiler optimization like inline expansion.

To decide whether a given function call should be expanded, the compiler needs to know

how large the invoked procedure is, what external variables it needs, and perhaps how

many other call sites exist. A different optimization will need other information.

If a pass is to be implemented by walking the tree, the walk must be done in the right

order so that any necessary external information is computed before-hand. Sometimes

there are ordering constraints on the transformations, while other times all the nodes in

the tree can conceptually be updated in parallel.

6.1 The Tree Data Structure

For apply-to-all operations to be generally useful, they must manipulate a data repre­

sentation that is flexible enough to handle a broad range of applications. I chose to use

the following C structure to represent a tree node:

typdef struct tree_node {

int node_type;
int veight;
int pass_veight;
char *description;
int number_of_children;

struct tree_node *children[];

char *extra_info;
} NODE;

Every node is identified to be of some particular type, so the tree walking routines

can invoke their client functions on only particular kinds of nodes. To use a node, the

22

description pointer is cast into the appropriate type of structure pointer, based on the

node type.

I chose to have an array of child nodes, rather than a linked list, because the compiler

commonly accesses children in an unpredictable order. It is much more efficient to allow

direct addressing.

The weight entry is an approximation. The routines that decompose a tree for

parallel processing use this number to balance the computational load. Sometimes the

expected cost of a computation for a particular subtree has little to do with its size.

For example, during inline expansion we may be handling only a few call sites scattered

over the tree,· each of which represents a lot of work (copying the body of the callee).

To improve balance in these cases, the data structure has a field called pass_veight.

This field can be set by an earlier pass to accurately reflect the cost of handling a

subtree, without affecting subsequent passes for which subtree size is a good predictor

for execution time. As was explained above, inline expansion passes consist of two

steps. The first, which marks the application nodes suitable for expansion, also sets the

pass_veight field to reflect the real amount of work to be done.

6.2 Tree Walking Operators

We need to process the tree structure in parallel, but the ordering dependencies are dif­

ferent in the various passes, so I designed three tree walking primitives. These traverse

the tree, applying a given operator at each applicable node. They are implemented by

dividing the tree into several subtrees, some set of which is handed to each applica­

tion operator. Once each piece is processed, they are merged again and the resulting

(modified) tree is returned. The tree input is marked destr, because of the destructive

changes, but the compiler is quite careful to ensure that there is only one copy of the

tree in existence when it enters a walker.

• top-down update - walk the tree, updating each node as it is encountered. An

update can rely on updates having been completed beforehand for all of its ances­

tors. The operator is given the node to update and an extra argument that is the

same for the whole walk.

• inherited-attribute update - walk the tree, computing an inherited attribute as

the traverse moves down. For each node, hand the operator an information package

that represents all computations on the way down.

• synthesized-attribute update- walk the tree from the bottom up, doing an update

of a given node based on the information that has been computed for each of its

children.

These functions are macros; they expand into a block of code that makes calls to

special operators that divide, traverse, and recombine the parse tree. To show in more

23

detail how a walk is implemented, I will explain in detail how the tree is divided during

a top-down update pass.

At the top level, we have the Delirium code that expresses the control structure, a

simple fork-join:

macro tree_walk_update(tree,node_type,operator,extra)

let <ut1,ut2,ut3> = tree_up_chop(tree,node_type,operator,extra)

in tree_merge(tree_up_op(utl,node_type,operator,extra),

tree_up_op(ut2,node_type,operator,extra),

tree_up_op(ut3,node_type,operator,extra))

This macro is given four arguments: the tree to operate on, the type of node this pass

is applicable to, an operator that updates a tree node appropriately, and an extra argu­

ment that the operator may need. Here is pseudo-code for a sequential implementation

of the walker:

update_walk(tree,node_type,operator,extra)

if the tree node is of type node_type

call operator(tree,extra)

for all children
call update_walk(child,node_type,operator,extra)

Note that we do not guarantee any ordering on traversals of the child sub-trees. All

ancestors of a node are guaranteed to be seen before the node, but siblings can be seen

in any order. This is the crucial property that allows updates to be done in parallel.

Here is the pseudo-code for the tree...up_chop routine:

I* tree_up_chop - walk the tree, constructing FAN_OUT sets of

* sub-trees, each having approximately the same total weight.

*I

tree_up_chop()
{

node_type = get input telling us what kinds of nodes to operate on

tree = get input giving tree

op = the operator we're applying during this walk

make an array of tree packages

target = the total weight of the tree divided by the number of pieces

call recursive_allocate(tree,package_array,node_type,op,goal)

output packages

24

}

recursive_allocate(tree,package_array,node_type,op,target)

{

}

if this tree node's type == node_type

call op(tree)

for i = 0 to number of children of the tree node

if child's weight is at least 113 of the target weight

put the child in the package that has the least total weight

update the chosen package's weight

else
recursive_allocate(the child,package_array,node_type,op,goal)

To ensure that the sets of subtrees allocated to each processor are roughly equivalent

in weight, every tree node is annotated with the size of the subtree below it. We divide

the total weight of the tree by the number of processors we will be using. The tree

traversal runs until we find a subtree that is less than one-third of the desired weight.

After each of the sets of subtrees has been similarly handled, they are merged into

a single tree again. In the case of the top-down update walk, there is no work left

to perform so the merge simply returns a pointer to the entire tree. The synthesized

attribute walk, on the other hand, must run over the crown of the tree finishing the pass

now that the values for the subtrees have been computed. Here is the pseudo code for

that routine:

syn_merge(op,extra,package_array)

{

}

op = get input giving op to work on

extra = get input with extra info

package_array = get all the packages

get the original root from one of the packages

value = syn_walk(root,op,extra,package_array)

output the root
output value

I* syn_walk - walk the tree, computing a synthesized attribute. When

* you encounter a node that has been spawned off, use the result value

* from the package.

*I
syn_walk(tree,op,extra,package_array)

25

{

}

if tree was clipped by syn_chop

return attribute computed for it (which is in one of the packages)

else if tree has no children

return op(tree,NULL,extra) (the 2nd arg is info from children)

else
make an info array large enough to hold the value from each child

for i = 0 to num_children-1

info[i] = syn_walk(i'th child,op,extra,package_array)

return(op(tree,info,extra))

The walk does a normal synthesized attribute computation, except that subtrees

that were clipped are not traversed. The work for that subtree has already been done in

syn_op and the attribute can be taken out of the appropriate package.

Notice that we are destructively modifying the tree, so we mark the inputs appro­

priately; the system will ensure that structures are copied if necessary. The compiler

ensures that no such copying is done by having each destructive pass operate on the re­

sult of an earlier one. Sequential dependencies ensure the proper sequencing and prevent

copying.

6.3 Compiler Passes

The compiler consists of several passes. The following sections describe each one in

detail, sketching the algorithms used to implement them. The complete Delirium code

for the compiler appears in Appendix III.

6.3.1 Building the Tree

The first step in compilation is to build the parse tree. I decided to use LEX and YACC

originally, expecting to recode the passes in parallel if they proved to be a bottleneck.

Various research projects have investigated parallellexing [21] and parsing [9] [22] with

varying degrees of sophistication. It proved to be unnecessary to adopt a clever solution,

because YACC is able to run in parallel under Delirium as long as the C compiler on the

target machine allows global variables to be placed in unshared storage. Each processor

runs a self-contained YACC; the subtrees are merged into a single parse tree at the end.

The process is as follows:

1. Lex the source code into an array of tokens.

2. Do a fast, dumb recursive descent parse based on delimiter matching to divide the

source into top level functions.

3. Allocate contiguous ranges of top level functions to a set of buckets.

26

4. Hand each bucket to YACC to get a. parse tree for that fraction of the code.

5. Generate an overa.ll parse tree from the partial trees.

This yielded very good loa.d balance (a.s will be discussed below) for parsing, and

wa.s much simpler than any complex para.llel parsing strategy. I decided that lexing

represented such a. sma.ll fraction of the compilation time that I could ignore it.

The only thing interesting about the conversion of source to parse tree is that the

tree is built out of the tree nodes described above. This lets generalized walkers process

the tree without understanding its structure. Macro definitions and ca.lls are collected

but not yet expanded; that is taken care of in the next pa.ss. The result of this pha.se is a

largely unannota.ted parse tree; only the bare textual information is represented, without

any analysis. References are unresolved, free variables uncollected, and so forth.

6.3.2 Macro Expansion

The next step is to expand a.ll macro invocations. Currently, the semantics are to do

a. straight replacement with no renaming. Every use of a. macro argument in its body

is replaced by the corresponding actual parameter expression. If scope conflicts prove

to be a nuisance, macro e..xpansion can be made similar to inline expansion of function

calls.

The expansion pa.ss is run repeatedly until fixpoint, to a.llow macros to ca.ll other

macros. The pa.ss is done with a synthesized attribute walk that computes a boolean

that reports whether any expansions were performed.

6.3.3 Environment Analysis

The environment is analyzed in several pa.sses. The final goal is to annotate each use

of a variable with the corresponding definition site and to mark functions that require

closures. This second ta.sk is not as ea.sy a.s it might seem. The rule for closures is simply

that a.ll functions must be closed that depend on an environment or are pa.ssed as an

argument or return value. The difficulty arises in mutual recursion. Suppose we have

the following Delirium code:

let one(x) = something(tvo(x))

tvo(y) = if pred(y)
then one(y)
else y

in one(1)

During the reference reconciliation phase, the compiler will mark one a.s having the

environment variable tvo and vice versa. Neither function rea.lly needs a closure, how­

ever, because one and tvo are known to each other directly. To avoid creating unneces­

sary closures, the compiler iterates a closure marking pa.ss to fi.xpoint.

27

Gather Free Walk the tree bottom up, gathering references to identifiers. When

bindings are encountered (like let bindings or function arguments), eliminate them from

the list that is passed upwards. Annotate each function definition with the free variables

referenced within it. The same thing happens at conditionals, to set up the gates that

were described in Section 3.1.5.

Gather Free is not very intelligent. It thinks that functions have many more unbound

variables than they do because it doesn't know about operators or unclosed functions.

The reason it can't be given that information is that scope rules may hide definitions

from the bottom of the tree.

Reconcile References To resolve references, each variable reference is updated with

a pointer to its binding site (or def site). There are six types of bindings: operator

definitions, let-bound variables, let-bound functions, function arguments, conditional

shadow variables, and environment variables. The last two of the six are not "real" def

sites; they are convenient fictions for the compiler and contain pointers to some other

def site. By following a chain of shadow variable and environment variable pointers, one

will always eventually end up at one of the first four kinds of bindings.

Reconciliation is handled by an inherited tree walk. The operator is given a stack

that represents the set of identifiers with known bindings. When a use is encountered,

the operator does a lookup and annotates the use with its definition site. The stack

semantics of the lookup ensures that the lexically nearest definition will be found first.

When new bindings are encountered, they are added to the stack and passed down

to the children. At a let statement, add all the bound names to the stack for each

child. If we have a function definition, also add the arguments during the traversal of

the corresponding function body.

Mark Extra Because the Gather Free pass blindly made shadow and environment

variables for everything, we have many extra definitions that should be eliminated. Mark

Extra is a top-down update walk that marks unnecessary definition sites that can be

eliminated.

As was explained previously, it is not immediately apparent whether a given function

should be closed or not. Mark Extra must make a decision, because closed functions are

invoked via their closures that are shadowed or put into the environment when necessary.

The third argument to Mark Extra tells it how to handle references to functions. The

options are: always assume every function is closed, always assume every function is not

closed, and look at the needs_closure field of the function.

Mark Extra is called three times during analysis, once with each of those arguments.

The first time, the conservative assumption gets rid of all the easily prunable cases.

The second pass is optimistic, mistakenly marking many required definition sites as

unnecessary. After Mark Closures uses this optimistic information to mark every closure

properly, the final call to Mark Extra has the information it needs to do correct and

28

reliable annotations.

Prune Extra Once a. set of definition sites have been marked unnecessary, the pruning

phase eliminates them. This is a. simple matter of removing the site from the linked list

in either a. conditional gate or a. function definition.

The third argument to the pruning operator tells it whether functions are properly

marked with the needs_closure flag. If so, references to unclosed functions are pruned

correctly.

Mark Closures The algorithm for determining whether a. function needs a. closure

requires iteration to fi.xpoint because it begins with the optimistic and usually incorrect

assumption that all functions are unclosed. Each pass examines the free variables of

every function that is marked unclosed. If any of the variables refers to anything other

than an unclosed function, the needs_closure flag is set. Any function that calls a

newly marked function will be picked up on the subsequent pass.

The pass is a. synthesized attribute walk that reports whether any changes were made.

The iteration continues until the return value is false.

6.3.4 In-Place Expansion

The expansion pass iterates to fixpoint. Each pass is tw~part- a. marking phase and an

expansion phase. As explained previously, this distinction is necessary to avoid clashing

between two expansions during parallel execution.

The marking phase examines each call site in the graph. A called function may not

be known - the called function might, for example, be a. variable that was passed into

the current function as an argument. Expansion is only done for known functions that

are smaller than some maximum size and that do not require closures. To decide whether

such a. call should be expanded, the compiler traverses the body of the called function

looking at all of its call sites. If any of those would cause an expansion, the original call

site is left unmarked.

When exploring the body of the called function, each of its call sites must in turn be

traversed recursively. This exploration could continue infinitely for recursive or mutually

recursive functions. In a. large call graph, it might also be very time consuming. The

first problem could be solved by marking functions as they are encountered, but tbis is

illegal in Delirium because the operator is not permitted to write into those other parts

of the tree. Furthermore, it could easily be true that the same function was called from

different places; two marking traversals could interfere with each other and get incorrect

results.

The solution I adopted is to place a depth bound on the recursive walk. This prevents

both infinite walks and overly lengthy ones. Here is an example:

29

let a(x) = a_function(x)

b(x) = compute(a(x))

in b(some_value)

The invocation of b causes the compiler to examine the body of b. This recursively

involves the traversal of a and compute. Suppose the latter requires a closure, so it is not

a candidate for expansion. The algorithm will mark the original call to b for expansion

if and only if it is sure that the call to uunction will not be expanded. Suppose that

a_function has a deep call graph that is not fully explored within the depth bound. In

that case, the walk would report that it isn't sure what will happen. However, when

the compiler encounters the call to a_function directly, it will go slightly deeper into

the call tree because the depth bound will not have been decremented twice. The extra

search may reveal that the expansion can be performed safely. To avoid problems, a call

to a function containing a possible expansion is never expanded.

On the other hand, suppose the compiler can determine that calls to both a_function

and compute will not expand. In that case, on the first expansion pass the call within

the body of b will be expanded. During the second pass, the call to b also expands,

yielding this final result:

compute(a_function(some_value))

It is obviously much more efficient to evaluate this expression than the original one,

which involved the creation of two closures and the machinery to invoke them.

6.3.5 Constant Propagation

Every node that represents the use of a variable is examined. If the variable is bound to a

constant in a let construct (either directly or through a definition site chain), the variable

use is replaced by the constant. The pass is a synthesized attribute walk that returns a

boolean indicating whether any changes were made. The constant propagation operator

either leaves the existing node, if the binding is not a known constant, or replaces that

node with a constant node.

The compiler iterates the propagation until all replacements have been pushed through.

Currently inter-function constant propagation is done only for e..xternal bindings. It

might be interesting to push constants through calls, when possible, but I tend to doubt

whether it would be much of a gain.

6.3.6 Mark Used

After inline e..xpansion, some function definitions are no longer used. The compiler simply

marks them unused but leaves them in the tree, primarily for debugging purposes. ~o

further computation is performed on the unused functions.

30

6.3.7 Common Sub-Expression Elimination

CSE is performed on every function definition by a top-down updating walk. Each of

the functions that are left in the tree at this stage in compilation correspond to a closure

template in the output, so inter-function CSE is not possible (and I doubt it would

be useful in any case). The operator walks the function's subtree in bottom-up order,

hashing the growing subexpressions into a table. If two entries coincide, the compiler

checks to see whether the corresponding sub-expressions are identical. When they are,

the compiler annotates one as being identical to the other. At graph conversion, one of

the subexpressions will generate graph nodes and the value will be sent to both uses.

Non-deterministic operators prevent CSE from being performed. As mentioned pre­

viously, the compiler guarantees the the number of invocations of such operators will not

be changed by optimization. Any sub-expressions that contain one are simply ignored

by this pass.

6.3.8 Graph Generation

Each function in the tree is converted into a closure subgraph; the subgraph is expressed

within the tree as an annotation to the function definition. The conversion process

traverses the tree, annotating each tree node with a graph node that outputs the value

for the subtree rooted there. For a detailed understanding of the conversion process, see

the (heavily commented) code.

6.3.9 Dead Code Elimination

An update walk is done on the tree, applying the pruning operator to the subgraph at

each function definition. The traversal is a recursive walk that marks each node with

the boolean reaches_return. When a node is encountered, the compiler looks at every

node it outputs to. If one of them is the return.node or has its reaches_return field

set, the boolean is set TRUE. Otherwise every node is marked as having been seen and

the recursive walk is performed on each target. If any of them reaches the return node,

the boolean is set for the current node. Every node that does not have the boolean set

is pruned out of the graph.

6.3.10 Graph Output

Output is done by a sequential operator. It outputs a set of templates, each representing

a closure (the BNF for the intermediate form is given in Appendix IV). A template

consists of a set of nodes with arcs between them, along with three special kinds of

arcs. The special arcs correspond to function arguments, environment variables, and

constants. Constants are represented directly so that the run time system can handle

them efficiently.

31

Given the following simple Delirium program:

main()
let a = 10

b = f (a)

in operator(b)

where f and operator are both sequential operators, here is the corresponding tem­

plate description:

ntemplates: 1 start_template: 0

template index: 0 n_env: 0 n_const: 1 n_args: 0 n_arcs: 3

n_nodes: 3

arc num 0 to 1
arc is word: 1

arc is destr: 0

fwd null: -1 -1

constant type: 0 data: 10

node 0 intr: 0 type: 1 template: 0 name: return_node

noutputs: 0

node 1 intr: 0 type: 0 template: 0 name: f

noutputs: 1
ncopies: 1
arc num 0 to 2

arc is word: 1

arc is destr: 0

fwd null: -1 -1

node 2 intr: 0 type: 0 template: 0 name: operator

noutputs: 1
ncopies: 1
arc num 0 to 0

arc is word: 1

arc is destr: 0

fwd null: -1 -1

1 Performance

The performance of the compiler can be analyzed from two perspectives. On the one

hand, Pythia is a. parallel application, running under the Delirium run time system. On

the other, it is an optimizing compiler that can be evaluated by the quality of its output.

32

7.1 Pythia as Application

The first time we ran the compiler in parallel, speedup figures were disappointing. The

run time system has a timing facility that allows the Delirium programmer to profile

an application. Looking at the costs of executing each operator, there were two obvious

problems. In some cases, the load was not very well balanced between the parallel

computations. The other problem was sequentially executing operators that took longer

than expected. After a few days of modifications, the figures were much improved -

running on the Sequent Symmetry, we achieved a 1.5 speedup with two processors, 2.1

with three. Speedup is expressed relative to the sequential version of the compiler.

The sequentially executing parts of the compiler made up roughly one-quarter to

one-third of its run time. The remainder parallelized well; parallel tree walking proved

to be highly effective in decomposing the load across processors. Here, for example, are

the timings of each operator during a synthesized attribute walk applying mark_2_expand

(in microseconds):

call of tree_syn_chop took 2224

call of tree_syn_op took 10888

call of tree_syn_op took 13533

call of tree_syn_op took 13759

call of tree_syn_merge took 3295

Notice that the load balance is nearly even, and that tree division and merging are

considerably cheaper than the computations. Approximately half of the time spend

in tree...syn...merge involves useful work that must be done in any case. The rest of

the merge, as well as the time needed to chop the tree, represent overhead imposed by

walking the tree in parallel rather than sequentially. Each operator also reads inputs and

generates outputs, adding another millisecond or so of overhead. In total, the parallel

version is roughly 10 percent more expensive. The speedup for this particularly pass

executing on three processors vs. the original sequential code is 2.

7.2 Graph Optimization

There are two kinds of nodes in the graphs produced by Pythia: normal nodes that

correspond to user-defined operators and extra nodes that manage control. The latter

include conditional gates. expanders, closure constructers, and so forth. Pythia is not

involved in the compilation of user operators. so the optimizations are all designed to

reduce the number of extra nodes that are added. The optimal output graph would only

have nodes corresponding to user-defined operators.

The most expensive overhead introduced by the compiler involves the creation and

invocation of closures. Table 1 shows the costs of various actions handled by the run

time system while executing on a Sequent Symmetry.

33

II operation j time (in p. sec) II
Node Scheduling 150

Closure Allocation 1500

Closure Fill 1500

Empty Closure Invocation 1500

Full Closure In vocation 2500

Cached Closure Invocation 600

Tail Recursive Invocation 400

Table 1: Run Time System Overhead

The numbers are averages, based on the microsecond clock timings we have gathered

for a variety of applications. The first field shows tb.e time to schedule an ordinary node

with two inputs and two outputs. The other fields break down the cost of managing

closures.

A Delirium function call corresponds to the dynamic expansion of a graph at run time

via an expander node. There are two ways an expander node can acquire the graph: a

token representing the graph can be passed in as an argument, or a direct reference to

the target graph can be hard-wired into the node at compiler time. The latter approach

only works when a known environment-less function is being called.

In the general case, where a closure token is to be passed to an expander node,

the token must be allocated, filled, and then the closure invoked. The entire process

requires roughly 5500 microseconds for a large closure. A subsequent invocation of the

same closure would only require 600 microseconds because of run time system caching -

the 1500 microsecond in vocation creates a set of token buffers that can be reused after

the closure returns. One such set must exist for each instance of the closure that is

simultaneously active.

A direct invocation of the closure eliminates the first two steps and improves the

efficiency of the third. The first invocation requires only 1500 microseconds; as in the

general case, an invocation that uses a cached buffer set requires roughly 600 microsec­

onds.

Tail recursive calls reuse the current buffer set, yielding slightly better performance

than a cached call.

Because closure manipulation is easily the most expensive operation performed by

the run time system, compiler optimizations that reduce or eliminate the extra clo­

sure management nodes have the greatest effect on execution time. The most effective

optimization is inline expansion, which eliminates the machinery entirely. A 5500 mi­

crosecond operation is replaced by one that requires only 150.

Another important optimization is closure analysis; by realizing that mutually-recursive

routines do not have environment variables, the compiler can use the cheaper alternate

34

calling strategy. Constant propagation helps here as well by eliminating unnecessary

references to variables bound outside the function.

Unfortunately, none of the real Delirium applications we have written gain much

benefit from graph optimization. The compiler, for example, is extremely coarse-grained;

compilation of the control structure for a medium sized applications takes on the order

of 2.99 seconds on one processor. Of that, 2. 79 seconds is spent inside user operators

doing useful work. The remaining .2 seconds is overhead - roughly 6.5 percent. When

optimization is turned off, overhead is increased by 30 milliseconds, adding 1.7 percent

to the overall run time.

The optimizations do become important, however, when grain size is reduced. I wrote

a simple Delirium program to test their effectiveness; it is based on a set of mutually

recursive functions organized into a loop. Each function iterates several dozen times and

calls the next in line, using references to constants bound in an enclosing lexical context.

Computation continues for ten iterations through the loop of functions. I compiled the

program with and without optimization; the difference in run time was 2.3 milliseconds

versus 10.1. For application that are extremely fine-grained with a. complex control

structure, the optimizations yield an important improvement in execution speed. We are

in the process of implementing some search algorithms that have those characteristics.

8 Conclusions

I decided to implement Pythia. in Delirium for two main reasons: to test the resilience of

our mixed programming paradigm, and to investigate optimization of dataflow programs.

vVe have proposed a. new way to write programs, based on a. mixture of functional

and imperative programming. The small programs that we wrote to test our original

implementation taught us valuable lessons, but ultimately they gave only a superficial

measure of the model's usefulness. We have begun implementing realistic applications

in this model and in others, comparing the programming difficulties and resulting per­

formance. We are encouraged by the ease with which we converted a. motion detection

code [6] written in Fortran to run under our system with near linear speed-up.

The compiler is currently the largest Delirium application; it clearly demonstrates

that the control structure of a. large and complex parallel program can often be expressed

compactly in a separate coordination language. The compiler is roughly 5500 lines of

code. Of this, 5000 is the same in both the sequential and parallel versions. To switch

to the parallel version, we remove a 100 line main module and replace it with the 100

lines of Delirium shown in appendix III a.nd a. 400 line auxiliary module that defines the

operators. Most of the operator code consists of parallel tree-walking primitives.

Pythia also shows that parallel tree walking is a. viable approach to implementing a

variety of tree-based computations in parallel. Once I settled on the three tree walking

primitives, I quickly grew accustomed to the restrictions they imposed. Because each tree

manipulation primitive was only concerned with a. single node, the code is fairly short

35

and was quick to debug. I did all my programming on a single-processor workstation

and, once the tree walking primitives had been debugged, the successive versions of the

compiler ran immediately in parallel when moved to the Sequent. The deterministic

behavior was extremly helpful and I never faced a race condition. Having battled non­

determinism many times in past parallel programs, its absence was a welcome change.

While compilation is not representative of the problem domains we are most inter­

ested in, Pythia is still a useful application because it involves complex manipulations of

a large data structure. We are convinced that the great majority of parallel applications

involve such computations and that any useful parallel programming environment must

be suitable for expressing them. The functional language community has tended to ne­

glect the issue, although some work has been done on arrays, particularly in SISAL [4].

Work on other data structures has lagged behind. Arvind has proposed the use of lazily

updated entities called !-structures [2], but they are difficult to use and to implement.

The second goal of the project was to investigate optimization techniques for dataflow

programs. A paper showing the optimization of an intermediate graph description lan­

guage called IFl [19] demonstrated how a number of traditional imperative language

optimizations can be applied to dataflow graphs. There are some techniques that are

no longer useful in the absence of side-effects, but any optimization that reduces the

amount of computation in a program is useful in both models.

Because of the characteristics of our existing applications, optimization has not had

a major effect on their execution time. We expect some of our currently evolving appli­

cations, however, to show a real improvement. As the previous section showed, removing

excess closure creation and invocation nodes can have a significant impact on the amount

of run time overhead.

Pythia has met both of its goals. It is an effective tool that we have used extensively

for the development of a variety of applications, including itself. Parallel tree walking

has proven to be an effective way to handle the task of compilation. Graph optimization

has yielded significant reductions in run time overhead, minimizing the impact of the

system on user code.

36

References

[1] W.B. Ackerman. "Data Flow Languages,". Computer, 15(2), February 1982.

[2] Arvind and Kim P. Gostelow. "An Asynchronous Programming Language and Com­

puting Machine,". Technical Report TR114a, Dept. of Information and Computer

Science, University of California, Irvine, December 1978.

[3] Arvind and R.E. Thomas. "!-Structures: An Efficient Data Type for Functional

Languages,". Technical Report TM-178, MIT Laboratory for Computer Science.

September 1980.

[4] David C. Cann. Compilation Techniques for High Performance Applicative Com­

putation. PhD thesis, Colorado State University, May 1989.

[5] Cray Research, Inc. Cray-2 Computer System Functional Description, hr-2000 edi­

tion, 1987.

[6] Frank H. Eeckman, Michael E. Colvin, and Timothy S. A .. "<elrod. "A Retina-Like

Model for N!otion Detection,". In IJCNN International Conference on Neural Net­

works, pages 247-249, Washington, D.C., 1989.

[7] A.D. Falkoff and K.E. Iverson. "The Design of APL,". In Ellis Horowitz, editor,

Programming Languages: A Grand Tour, pages 240-250. Computer Science Press,

Inc., 1987.

[8] Gary Fielland. "The Balance ~fultiprocessor System,". IEEE Micro, 1(8):57-69.

February 1988.

[9] C. N. Fischer. On Parsing Context Free Languages in Parallel Environments. PhD

thesis, Cornell University, 1975.

[10] John Gurd, C.C. Kirkham. and Ian Watson. "The Manchester Prototype Dataflow

Computer,". Communications of the ACM, 28(1):34-52, January 1985.

[11] M.D. Hill, S.J. Eggers, J.R. Larus, G.S. Taylor, G. Adams, B.K. Bose, G.A. Gibson.

P.M. Hansen. J. Keller, S.I. Kong, C.G. Lee, D. Lee, J.:yi. Pendleton, S.A. Ritchie.

D.A. Wood, B.G. Zorn, P.~. Hilfinger, D.A. Hodges, R.H. Katz, J.K. Ousterhout.

and D.A. Patterson. "Design Decisions in SPUR,". Computer, 19(11), ~ovember

1986.

[12] Paul Hudak. "ALFL Reference Manual and Programmers Guide, 2nd edition,''.

Technical Report YALEU /DCS/TR-322, Yale University, October 1984.

[13] Edward A. Lee and D.G. Messerschmitt. "Static Scheduling of Synchronous

Dataflow Programs for Digital Signal Processing,". IEEE Transactions on on Com­

puters, C-36(2), January 1982.

37

[14] Steven Lucco and Oliver Sharp. "Madness: A Parallel Programming Environment,".

Technical Report in preparation, UC /Berkeley Computer Science Department, 1990.

[15) James R.).1cGraw. "The VAL Language: Description and Analysis,". ACM Trans­

actions on on Programming Languages and Systems, 4~1):44-82, January 1982.

(16] James R. McGraw and Stephen K. Skedzielewski. "'Streams and Iteration in Val:

Additions to a Data Flow Language,". In Proceedings of the Third International

Conference on Distributed Computer Systems, pages 73G-739, October 1982.

[17) Jonathan Rees and William Clinger. "Revised 3 Report on the Algorithmic Language

SCHEME,". SIGPLAN Notices, 21(12), December 1986.

[18] Vivek Sarkar and John Hennessey. "Partitioning Parallel Programs for).hero

Dataflow,". In A CM Conference on Lisp and Functional Programming, pages 202-

211, Cambridge, Mass., 1986.

[19] S.K. Skedzielewski and M.L. Welcome. "Data Flow Graph Optimization in !Fl.''.

In Functional Programming Languages and Computer Architecture, pages 17-34,

Nancy, France, 1985.

[20] Charles P. Thacker, Lawrence C. Stewart. and Jr. Edwin H. Satterthwaite. ''Firefly:

A Multiprocessor Workstation,". Technical Report 23, DEC SRC, December 1987.

(21] Chun Pong Yu. "Practical Parallel Lexing,". Master's thesis, Computer Systems

Research Institute, University of Toronto, May 1989.

[22] M. Zosel. "A Parallel Approach to Compilation.". In ACM Symposium on Principles

of Programming Languages, pages 59-70, 1973.

38

salt
ba:sil (=6)

Figure 1:
Creation of a Closure

pepper qr>:~ph p~r

Gr>!>pn for

)lack.' s 3od.y

Figure 2:
The Expander in Action

':t-Ie environment

r :ll!l!lil

I nlt

\
\

eec:k :5lot \
i:J routed to
the nod.e:J

100 (ergument #l)

!hod.'" body

Figure 3:
Compilation of a Let Statement

< exl>r 1 > gnph
(red)

~orne_ oe><tr1!1 tor

T

!igure ~: Conditional 3tatment

12 (X)

i:seV"en ~ --

-- "---.

' \
J

/

./
/

I
\

../"

-----c c:o lle<:tor -___ _.....-

-,.,...

<fal:se ex~r>

gral'n

Note: the da:sked arro~ indicate null token for~rdinq

10 Appendix II: BNF Grammar

program : function_list

function_ list function I macro I function_list function

function_list macro

macro : 'macro' id args expr

function : id args expr

args : < (I I) I ' (
1 arg_list ') 1

arg_list : arg_list ',' id id

expr : conditional I let_stmt iterate I mult_value I func_app

I macro_call I prim_expr

let_stmt LET bindings IN expr

bindings bindings binding I binding

binding : var_binding I mult_var_binding I func_def

var_binding : id '=' expr

mult_var_binding '<' var_list '> 1 '=I expr

func_def id args '=' expr

var_list var_list ',' id I id

iterate : ITERATE'[' iter_bindings ']' WHILE expr ',' RESULT expr

iter_bindings : iter_bindings iter_binding I iter_binding

iter_binding : id '= 1 expr ', 1 expr

conditional : IF expr THEN expr ELSE expr

prim_expr : integer I string I id I float

mult_value : '<' expr_list '>'

40

expr_list : expr_list ',' expr I expr

func_app : id app_args

macro_call : id app_args

app_args : '(' ')' I '(' app_arg_list ')'

app_arg_list : app_arg_list c ,

'
expr I expr

41

11 Appendix Ill: Pythia - the Delirium Code

I pythia.del - this is the Delirium code for the compiler

macro tree_valk_synthesize(tree,operator,extra)

let <stl,st2,st3> = tree_syn_chop(tree)

in tree_syn_merge(tree_syn_op(stl,operator,extra),

tree_syn_op(st2,operator,extra),

tree_syn_op(st3,operator,extra),

operator,extra)

macro tree_valk_update(tree,node_type,operator,extra)

let <utl,ut2,ut3> = tree_up_chop(tree,node_type,operator,extra)

in tree_merge(tree_up_op(utl,node_type,operator,extra),

tree_up_op(ut2,node_type,operator,extra),

tree_up_op(ut3,node_type,operator,extra))

macro tree_valk_inherit(tree,operator,info,extra)

let <itl,it2,it3> = tree_in_chop(tree,operator,info,extra)

in tree_merge(tree_in_op(itl,operator,extra),

tree_in_op(it2,operator,extra),

tree_in_op(it3,operator,extra))

iterate_to_fixpoint is a macro that iterates synthesized attribute

tree traversals until the second return value is false

macro iterate_to_fixpoint(tree,operator,extra)

iterate {
results = <tree,TRUE>,

tree_walk_synthesize(car(results),operator,extra)

} while cadr(results),

result car(results)

main()
let <init_tree,macros> = compile()

<ops,types> = read_operator_info()

expand_tree = iterate_to_fixpoint(init_tree,expand_macro,macros)

analyzed_tree = analyze(expand_tree,ops,macros)

optimized_tree = optimize(analyzed_tree,ops)

used_tree = mark_used(optimized_tree)

<convert_tree,number> = convert(used_tree)

cleaned_tree = tree_walk_update(convert_tree,LETREC,clean_up,NULL)

in output_graph(cleaned_tree,number,types,ops)

42

I compile - read in the lexemes, do a parallel YACC parse, recombine

I the parse tree, and return it. Return the merged macro table as well.

compile()
let <c1,c2,c3> = split_lexemes()

in forge_parse_tree(partial_parse(c1),partial_parse(c2),

partial_parse(c3))

I analyze - given a parse tree, the operator descriptions, and the

I hash table of macros, do environment analysis and return the

annotated tree.

analyze(tree,ops,macros)
let free_tree = car(tree_walk_synthesize(tree,gather_free,NULL))

recon_tree = tree_walk_inherit(free_tree,reconcile_refs,ops,NULL)

marked_tree = tree_walk_update(recon_tree,ANY,mark_extra,SAFE)

pruned_tree = tree_walk_update(marked_tree,ANY,prune_extra,SAFE)

overmark_tree = tree_walk_update(pruned_tree,ANY,mark_extra,RISK)

closed_tree = iterate_to_fixpoint(overmark_tree,mark_closures,NULL)

final_tree = tree_walk_update(closed_tree,ANY,mark_extra,FINISH)

in tree_walk_update(final_tree,ANY,prune_extra,FINISH)

optimize- first iterate the inline expansion code until fixpoint.

Then do constant propagation and common sub-expression elimination.

optimize(tree,ops)
let expanded_tree =

iterate {
results= do_an_expansion(tree,ops),

do_an_expansion(car(results),ops)

} while cadr(results),

result car(results)

const_tree = iterate_to_fixpoint(expanded_tree,propagate_const,NULL)

in tree_walk_update(const_tree,ANY,CSE,NULL)

do_an_expansion- given a tree and the operators, do an inline

expansion pass. Then mark any further expansions that are to be

done. Return the nevly expanded tree and a TRUE/FALSE boolean

indicating whether more work remains.

do_an_expansion(tree,ops)

let modified_tree = tree_valk_update(tree,FUNC_APP,expand_calls,ops)

redone_tree = analyze(modified_tree,ops,NULL)

in tree_walk_synthesize(redone_tree,mark_2_expand,NULL)

43

convert - given a parse tree, number each template and then convert

it into a graph. Return the annotated tree and the total number of

#templates.

convert(tree)
let <number,numbered_tree> = number_templates(tree,O)

<ct1,ct2,ct3> = output_chop(numbered_tree)

new_tree = tree_merge(output_op(ctl), output_op(ct2),

output_op(ct3))

in <new_tree,number>

44

12 Appendix IV: BNF For Intermediate Form

graph : 'ntemplates:' int 'start_template:' int templates

templates : 'template index:' stats arg_arcs env_arcs const_arcs nodes

stats : 'n_env:' int 'n_const:' int 'n_args:' int 'n_arcs:' int

arg_arcs arc-set

env_arcs : arc-set

const_arcs : const_arcs const_arc I null

const_arc : arc 'constant type: ' int ' data: ' const_data

arc-set : 'ncopies:' int arcs

arcs : arc arcs I null

arc : 'arc num' int 'to' int 'arc is word:' flag 'arc is destr:' flag

'fwd null: ' int int

node 'node' int 'intr: ' int 'type:' int 'template: ' int 'name:' id

'noutputs:' n outputs

outputs : arc-set outputs I null

flag : 1 I 0

45

